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Abstract

We describe the problem of scheduling observations for an
airborne astronomical observatory. The problem incorporates
complex constraints relating the feasibility of an astronomical
observation to the position and time of a mobile observatory,
as well as traditional temporal constraints and optimization
criteria. We describe the problem, its proposed solution and
the empirical validation of that solution.

Introduction
The Stratospheric Observatory for Infrared Astronomy
(SOFIA) is NASA’s next generation airborne astronomical
observatory. The facility consists of a 747-SP modified to
accommodate a 2.7 meter telescope. SOFIA is expected to
fly an average of 140 science flights/year over it’s 20 year
life time. The SOFIA telescope is mounted aft of the wings
on the port side of the aircraft and is articulated through a
range of 20 to 60 degrees of elevation. The telescope has
no lateral flexibility; thus, the aircraft must turn constantly
to maintain the telescope’s focus on an object during ob-
servations. A significant problem in future SOFIA opera-
tions is that of scheduling Facility Instrument (FI) flights in
support of the SOFIA General Investigator (GI) program.
GIs are expected to propose small numbers of observations,
and many observations must be grouped together to make
up single flights. Approximately 70 GI flight per year are
expected, with 5-15 observations per flight. The scope of
the flight planning problem for supporting GI observations
with the anticipated flight rate for SOFIA makes the man-
ual approach for flight planning daunting. There has been
considerable success in automating the scheduling of astro-
nomical observations in a variety of contexts, ranging from
ground-based telescopes (Bresina 1996) to the Hubble Space
Telescope (Johnston & Miller 1994). In this paper, we de-
scribe the application of automated scheduling techniques to
this problem.

A Quick Astronomy Lesson
The principal constraints in the SFPP are those governing
the visibility of astronomical objects and the motion of the
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aircraft. As we shall see, these constraints interact in com-
plex ways, leading to an interesting scheduling problem. We
will follow the conventions in Meeus (Meeus 1991) in de-
termining the visibility conditions for an astronomical ob-
ject and the equations of motion of the aircraft that follow.
Meeus uses the following definitions:

• α is the Right Ascension (RA) of the object to be observed
(similar to Longitude on Earth).

• δ is the Declination (Dec) of the object to be observed
(similar to Latitude on Earth).

• φ is the Earth latitude at which the observation occurs.
Positive latitudes are in the Northern hemisphere.

• L is the Earth longitude at which the observation occurs.
Positive longitudes are measured West from Greenwich.

• θ is the ”time” 1 at which the observation is performed.

• h is the elevation angle of the object relative to the horizon
at the location of the observation. Positive elevations are
above the horizon.

• A is the azimuth of the observation at the location of the
observation. Azimuth is measured in degrees West, as-
suming that 0 degrees is due South.

Suppose all quantities excepth andA are fixed. We can
solve forh andA as follows:

H ≡ θ − L− α (1)

sinh = sinφ sin δ + cos φ cos δ cos H (2)

tanA =
sinH

cos H sinφ− tan δ cos θ
(3)

The telescope has minimum and maximum elevation lim-
its, and so there may be times when an object is not visible,
even if it is above the horizon. Figure 1 shows the visibility

1Time, in this case, refers to Greenwich Sidereal Time, which
is related to how long it takes the Earth to orbit the Sun, as opposed
to local time, which is the amount of time it takes the Sun to reach
the same position in the local sky.



Figure 1: Visibility and azimuth of an object as seen from
Moffett Field, CA. as a function of time. The gap in the
graph indicates that the object elevation is below 20 degrees,
and the dotted line indicates that the object elevation is above
60 degrees. Notice how the azimuth can vary greatly over
periods of time as short as half an hour.

windows for an object over a 24 hour period when viewed
from a fixed position.

Since the telescope has no lateral flexibility, the aircraft
must turn continuously during an observation in order to
keep the object in view. Figure 1 also shows the direction
that the aircraft must fly in order to observe the object over
time, at a fixed position. The aircraft is continuously in mo-
tion during observing. Consequently, the position of the air-
craft after completing an observation is a complex function
of the object’s coordinates and the observation’s position
and the start time. Beginning with the previous equations
describing the azimuth of the observation, the equations of
motion of the aircraft can be derived. Suppose theground
speedof the aircraft isV , therelative bearing2 of the tele-
scope isr, and that the Earth is a sphere whose radius isa.
Assume that the aircraft moves at velocity V in such a way
that the angle between the direction of motion and the ob-
ject’s azimuth is constantlyr. Then the equations of motion
are

dφ

dθ
= −V cos(A− r)

a
(4)

2The direction the telescope points relative to the direction of
motion of the aircraft.

dL

dθ
= −V sin(A− r)

a cos φ
(5)

where we solve forA using Equation 3.

Flight Plans
We use a simple model of the aircraft state when planning
flights. The aircraft can be on the ground, taking off, land-
ing, performing a turn, performing a flight leg, or perform-
ing a dead leg. Aflight leg is a period of time during which
an observation is taking place. We assume that the target
remains fixed throughout the flight leg. The aircraft’s final
position after a flight leg is determined by solving Equations
4 and 5. Adead legis a leg during which no observation is
taking place. Dead legs are needed to reposition the aircraft
in order to enable observations; for instance, if an object is
out of elevation range, flying a short dead leg can move the
aircraft to a position where the object elevation is within the
range allowed by the telescope. The takeoff and landing legs
are also assumed to be dead legs. The aircraft’s final position
is found by assuming that the ground track is a Great Circle
on the surface of the sphere whose distance and heading are
determined by the planner. Takeoff and landing activities are
special dead legs indicating the beginning and ending of the
flight plan. Takeoff terminates at one of a set of waypoints
associated with the airport, and similarly landing must begin
at one of these waypoints. We assume that each leg is sep-
arated by a turn, and that the aircraft turns at a rate of 180
degrees every 2 minutes (the Standard Rate Turn for a 747).

Problem Statement
We assume that a number of individual observation requests
from GIs have been accepted for observing and assigned pri-
oritized. The input to the SFPP is defined as follows:

• A set of observation requests, each consisting of the Right
Ascension (RA) and Declination (Dec), observation dura-
tion, priority, earliest start time and latest end time.

• A flight date.

• A maximum flight duration.

• A flight horizon (i.e. earliest takeoff time and latest land-
ing time).

• A designated takeoff and landing airport (which need not
be the same).

The objective is to find a flight plan that maximizes the
summed priority of the observations of the observations per-
formed. Since it is intractable to find the best possible plan,
we will relax this constraint and limit ourselves to search-
ing for goodplans that perform many observations of high
priority.

The scheduling problem requires making the following
choices:

• Which observations to perform.

• The order in which the observations are performed.

• The takeoff time and waypoint.

• Whether or not dead legs are performed.



• Dead leg duration and heading.

• Landing waypoint.

ForwardPlan(K, O, H, S, P, F )
Q = ∅;P ′ = ∅
repeatS times

choose a valueh ∈ H
P ′ = P ′||h
O′ = O
P ′=Lookahead(K, O′, P ′, F )
Q = Q∪ (h,FullEvaluate(P ′))

h=Select(Q)
P = P ||h
while O not empty

Q = ∅;P ′ = ∅
for each unscheduled observationo ∈ O

if Feasible(o, P, F )
P ′ = P ||o # o includes dead leg, if necessary
P ′=Lookahead(K, O′, P ′, F )
Q = Q∪ (o,FullEvaluate(P ′))

if Q not empty
o′ =Select(Q)
P = P ||o′

removeo′ from O
else
O = ∅
break

return P
end

Figure 2: A sketch of the SFPP Flight Planning Algorithm.

Algorithm Description
A quick look at the search space reveals the scope of the
problem. Notice that there are no constraints on the choice
of dead leg heading or duration. If time were modeled as a
continuous quantity, then the search space would be math-
ematically infinite; even if time and heading were modeled
as integers, the search space would be quite large. With-
out considering these problems, the search space is ”merely”
combinatorial.

We observe that it is necessary to know bothwherean ob-
servation begins andwhenan observation begins in order to
know where the aircraft is after the observation ends. This
can be seen due to the fact that Equations 4 and 5 take the
azimuthA as a parameter, which in turn is a function of the
position of the aircraft and the time the observation is per-
formed. It is also necessary to know where and when the
observation begins to determine whether or not the obser-
vation is feasible, since this requires ensuring that the el-
evation constraints are not violated during the observation.
Since we need to know the location of the aircraft and the
time of the observation in order to evaluate candidate flight
legs, we use a progression planning algorithm that simulates
the flight from takeoff to landing. The algorithm proceeds

Lookahead(K, O, F, P )
repeatK times

Q = ∅
while O is not empty

for each unscheduled observationo ∈ O
if Feasible(o, P, F )
Q = Q∪ (o,LookEvaluate(P ||o))

if Q not empty
o′ =Select(Q)
P = P ||o′

removeo′ from O
else break

return P
end

Figure 3: A sketch of the Lookahead phase of the SFPP
Flight Planning Algorithm.

by evaluating the utility of performing each of the unsched-
uled observations next in the plan using a combination of
lookahead and heuristics. Once the observations are evalu-
ated, one is chosen to perform next, and the process repeats
until there are no feasible observations left. The resulting
algorithm, called ForwardPlan, is shown in Figure 2. In the
algorithm descriptions,K is the lookahead distance,O is the
set of observations,S is the number of start time samples,P
is the schedule,H is the set of possible takeoff times,F is
the flight duration.

The algorithm can potentially perform a large number of
flight leg construction steps, as well as searching for dead
legs to enable observations. Recall that constructing a flight
leg requires solving Equations 4 and 5. To minimize these
costly operations, instead of using a full lookahead, we use
a second heuristic (called LookEvaluate() to distinguish it
from the FullEvaluate() function used in ForwardPlan) to
guide the selection of observations used in the lookahead
phase. The heuristic evaluations are used as the input to a
stochastic selection algorithm.

Figure 4 shows the search process. ForwardPlan evalu-
ates each observation as a candidate for extending the plan
by first assuming the plan is extended by an observation,
then performing lookahead. The lookahead phase builds
the ”best” extension of this plan using the LookEvaluate()
heuristic. Once this has been done for each observation,
these plans are evaluated using the FullEvaluate() heuristic.
The results of this evaluation are used to rank each observa-
tion, and these ranks are used to choose the next observation
in the plan.

We now analyze the computational complexity of For-
wardPlan. We will analyze the complexity in terms of calls
to Feasible(), which comprises a number of flight leg and
dead leg construction steps. Let us assume that the start
time has been selected. LetN be the number of observation
requests, letK be the lookahead depth, and letM be the
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Figure 4: ForwardPlan’s search. At each step, all feasible
observations are considered as the next step in the plan. An
extension of the plan is built using the LookEvaluate heuris-
tic, and the FullEvaluate heuristic is used to determine which
observation to perform next.

maximum number of observations that can be in any flight
plan. Then the algorithm makesO(N2KM) calls to Feasi-
ble(). The proof is as follows: For each call to Lookahead(),
we construct a plan with at mostK steps, in which we call
Feasible() for each of the observations not scheduled during
the lookahead phase. This number is bounded above byN .
Thus, each call to Lookahead() costsO(NK) calls to Feasi-
ble(). A plan is assumed to have at mostM steps. For each
of these steps, we call Lookahead at mostN times, since
we must consider extending the plan by each unscheduled
observation. In addition, for each of these steps, we make
at mostN calls to Feasible() to decide which observations
must be evaluated. Thus, we haveO(N2KM) calls to Fea-
sible(). The cost of evaluatingS start times isS calls to the
Lookahead() function, which is dominated by the rest of the
algorithm. Note that the maximum number of observations
that can be in a flight plan,M , is unknown, and could be
O(N) in some cases; thus, in the worst case, the algorithm
is O(N3).

Constructing Dead Legs
The feasibility check Feasible(o, P, F ) attempts to extendP
by adding observationo to the end ofP . This requires deter-
mining whether or not the visibility constraints are violated
during the flight leg, and ensuring that the aircraft can fly to
the landing airport after the flight leg is finished. If the visi-
bility constraints are violated, it may be possible to construct
adead legto reposition the aircraft or delay the observation.
For example, if the object is just below the horizon and is
rising, either flying towards the object or delaying the obser-
vation by a short time can make the observation feasible. It is

Feasible(o, P, F )
# D is the maximum dead leg duration
# I is the dead leg increment,E is the heading increment
Construct flight leg foro
Construct dead leg to landing airport
if the flight duration< F and object is visible

return true
d′= duration of dead leg enablingo by changing latitude
e′= heading of dead leg enablingo by changing latitude
if d′ > D

return false
for d = d′ to 0 by−I

noDeadLeg=true
# Search headings +/- 90 degrees frome′

for e = e′ − 90 to e′ + 90 by E
Fly dead leg specified byd, e
Construct flight leg foro
Construct dead leg to landing airport
if flight duration< F and object is visible

noDeadLeg=false
deadLeg=(d, e)
break

if noDeadLeg==true
break

o = deadLeg||o
return true

Figure 5: A sketch of the Feasible check of the SFPP Flight
Planning Algorithm.

not always possible to construct a dead leg to observe an ob-
ject. For example, if an object is setting and the aircraft is at
low or middle latitudes, then the speed of the Earth’s rotation
exceeds the aircraft’s maximum speed, so the aircraft can’t
catch up to the object. The search space for this consists of
all possible headings and dead leg durations, which is very
large. We restrict this search by limiting the maximum dead
leg durationD, constraining the dead legs to be multiples
of a constant valueI, and restricting the possible heading
changes to be multiples of a constant valueE. These are
tunable parameters of ForwardPlan. The Feasible() check
first searches for a dead leg that restricts the headings to ei-
ther due North or due South. A shorter dead leg enabling
the observation may exist; for instance, if the object is be-
low the minimum elevation and rising, flying towards it will
minimize the time until it is visible. So we attempt to find a
dead leg of shorter duration. We do not need to search dead
legs that change the latitude in the reverse direction, as they
are guaranteed to be longer than the dead leg we just discov-
ered. As soon as we find a dead leg duration which could
not enable the observation, the procedure halts.

As can be seen from the sketch of this procedure, each
call to Feasible() results in at most2D

I + 180D
EI constructions

of flight legs, enabling dead legs, and dead legs to return the
aircraft to the landing airport. However, in many cases the
actual number may be much smaller.
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Figure 6: Difference in flight efficiencies between archived
schedule and schedules we find. This plot shows the dif-
ference between the archived flight efficiency and both the
maximum efficiency and the average of all efficiencies max-
imizing the number of observations scheduled.

Heuristics

Heuristics play two roles in the ForwardPlanner algorithm.
They are used to decide which observations are added dur-
ing the lookahead phase (the call to LookEvaluate()), and
they are used to commit to the next observation in the plan
based on the results of the results of lookahead (the call to
FullEvaluate()). We view both heuristics as a mapping from
a flight planP to a real number. In this section, we describe
the heuristics in detail.

A good flight plan is one that observes many high valued
observation requests, but takes as little time as possible. In-
directly, this means minimizing the amount of dead leg time.
A heuristic should also pay attention to how much time is
needed to get the aircraft to the landing airport; if observa-
tions naturally carry the aircraft towards the landing airport,
that may reduce dead leg time to land after observations are
completed. However, plans that ”loiter” over the landing
airport may not enable the most important observations.

We have identified fourfeaturesof a flight plan that serve
as the input to heuristics:

1. Importance: the summed priority of the observations per-
formed in the flight plan

2. Efficiency: the summed duration of flight legs divided by
the total flight duration

3. Dead leg home distance: the amount of time required to
fly to the landing airport

4. Turn amount: the total degrees of heading changes be-
tween flight legs
Some of these features work in opposition to each other.

Relying on importance more than efficiency may lead to
poor choices when a high priority observation is very in-
efficient. Relying on efficiency more than importance may
lead to poor choices when high priority observations do not
lead to great inefficiency. For this reason, we associate with
each of these features a real valued weight between 0 and 1.
The heuristics then map a flight plan into a real number by
summing the weighted value of each feature. We can thus
express a number of heuristics that play these features off
each other in an attempt to identify a good heuristic. For-
wardPlan is implemented so that LookEvaluate() and Full-
Evaluate() can use different weigts and implement different
heuristic functions.

Analysis
In this section, we analyze the performance of the flight
planner algorithm. We first describe the source of our prob-
lem instances. We then discuss some preliminary experi-
ments to determine good parameter settings for the algo-
rithm parameters. We then present experiments to determine
the effectiveness of the algorithm using the parameter values
we felt were most suitable on two different classes of flight
planning problems.

Sample Problems
The SOFIA observatory is the successor to the Kuiper Air-
borne Observatory (KAO), which performed infrared astro-
nomical observations between 1974 and 1995. It is expected
that SOFIA will be used to observe many of the same ob-
jects that were observed with KAO, and the telescope ele-
vation of SOFIA is similar to that of KAO. NASA Ames
Research Center has many years of archived flight plans that
were executed aboard KAO. Since SOFIA is not yet opera-
tional, we obtained from KAO astronomers a representative
set of flights that we used to construct test instances. These
flights were flown from Moffett Field, CA; Honolulu, HI
and Christchurch, NZ between 1988 and 1995, and occurred
between the months of April and November. The archived
flight plan data contains only a specification of the flight plan
that was actually executed. It contains no indication of what
set of requests were considered when making the plan. Fur-
thermore, the flight plans reflect considerations such as re-
stricted airspace and predicted winds that our planner cannot
yet handle. Nevertheless, they provide a reasonable bench-
mark to compare the performance of our planner.

We created two sets of problem instances using the
archived flight plans. The first set of problem instances
were designed to test the basic performance of the algo-
rithm. These problem instances were created using a single
archived flight as the basis of each instance. As such, we
refer to them as the Single Day Instances. Each observation
was converted into a request to observe the object for the
same amount of time it was observed in the archived plan.
We gave all observation requests the same priority3. The

3The KAO astronomers had indicated informal object priorities



flight was requested to take off and land at the same airports
used in the archived plan. The flight was requested to take
less than 1.1 times as long as the archived flight. Finally, the
flight was requested to take off no earlier than 30 minutes
before the archived takeoff time, and land no late than 30
minutes after the archived landing time.

Figure 7 lists some salient characteristics of the Single
Day Instances. We tabulate the number of observations, the
archived flight duration, and the airport. In only one case
did the takeoff and landing airports differ; in this case, the
flight plan began at Moffett Field and ended at Honolulu.
The instance numbers in this table will be used to present
results of our algorithm later in the paper.

The second set of problem instances was designed to push
the planner by ensuring that not all observations could be
scheduled. These instances were constructed from the first
set by merging requests for different flights. Thus, we refer
to them as the Multiple Day Instances. We merged flights
that were originally executed within one or two months of
each other during the same calendar year. With one excep-
tion, we only merged flights from the same airports. We
adjusted the flight duration to be the maximum of the flight
durations of the Single Day Instances used to construct the
new instance. In addition, we adjusted the earliest takeoff
time to be the minimum of the earliest takeoff times of the
Single Day Instances, and the latest landing time to be the
maximum of the latest landing times. We then generated one
instance with the set of all of the requests and the new dura-
tion, takeoff and landing times, for each date corresponding
to the contributing Single Day Instances. Due to the variabil-
ity in the number of observations in the Single Day Instances
and number of flights taking place within a short period of
time, the number of observations in these larger problems
varies widely. Figure 8 describes the instances formed by
combining problem Single Day Instances flown within one
month of each other. Figure 9 describes the instances formed
by combining problem Single Day Instances flown within
two months of each other.

It is worth noting some features of our test problems.
While the problem description admits varying observation
priorities, our test problem instances all had identical pri-
orities for observations. While the problem description al-
lows for constraints on the legal times to perform an obser-
vation, our problems have no additional constraints beyond
those imposed by the takeoff and landing time. Since the in-
stances do not specify either winds or restricted flight zones,
it is possible that shorter plans than the archived ones could
be found by our planner. Finally, all of the problems have
known solutions, and thus might be considered ”easy” for
this reason. Our problem formulation strategy ensures that
these solutions are disguised by increasing the search space
in a manner consistent with our expectations on the actual
flight planning problems.

for only a subset of the flight plans delivered to us, and had no basis
to compare two flight plans with different objects except for total
observing time.

Parameter Settings
We have implemented ForwardPlanner using EUROPA
(Frank & J́onsson 2003), a constraint-based planning infras-
tructure that supports a wide variety of planning algorithms.
We implemented the constraints to solve Equations 4 and
5 via Euler’s method (Ferziger 1981) and assume that the
ground track is composed of a sequence of Great Circles ap-
proximating the true ground track.

We conducted preliminary experiments on a small set of
problems from the Single Day Instances in order to choose
good parameter values for the algorithm. We chose one
flight each from Moffett Field, CA, Christchurch, NZ and
Honolulu, HI to perform our initial experiments.

We considered the following parameters:

• Whether to include or omit each feature of the heuristic in
the call to LookEvaluate().

• Whether to include or omit each feature of the heuristic in
the call to FullEvaluate().

• Lookahead depth.

• Number of start times.

• The proportion of the time the heuristic is used to drive
greedy selection as opposed to using the output of the
heuristic probabilistically. We allowed different propor-
tions for the Select() function calls in Lookahead() and in
ForwardPlan().

Initially, we did not vary the parameters governing the
search for dead legs. For these experiments, we restricted
the maximum dead leg duration to 4 hours, the dead leg in-
crement to 1 minute, and the heading increment to 7.5 de-
grees. We describe experiments varying the dead leg search
parameters in a later section.

We searched for combinations of parameter values that
ensured good performance on the subset of problems we
used for these experiments. Good performance in this case
meant that the parameter settings enabled the algorithm to
find schedules in which all of the observations were per-
formed, and the overall flight duration came as close as
possible to the duration of the flight executed in the KAO
archives.

Due to the large space of variations in the algorithm set-
tings, we investigated only a small fraction of the possible
combinations. Our results led to the following informal con-
clusions, in rough order of importance:

1. Employing a suitable lookahead distance was important to
achieving good performance. A lookahead distance of 4
observations was achieved a good balance between com-
putational cost and finding good flight plans. Note that
this is roughly half the length of the average Single Day
flight.

2. Using the heuristics with a small amount of stochastic-
ity in the lookahead phase was beneficial. The heuris-
tic was always used greedily in the observation selection
phase. In retrospect, this may be because the archived
flight plans had no dead legs apart from the takeoff and
landing legs; thus, greedily choosing observations that the
heuristics ranked highly might be the best course.



Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Airport H H H H M M M M M M M M M M M M M M M M M M M MH
# Obs 9 9 10 10 7 8 8 6 10 8 8 6 11 10 8 9 10 8 8 8 9 9 6 8
Dur 437 432 440 441 460 495 500 515 610 470 600 390 432 437 445 439 440 449 448 441 440 442 293 435

Index 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
Airport M M M M M M M M M M M M M M M M M M M N N N N N

Obs 7 4 7 6 7 9 8 11 10 8 7 7 7 3 9 8 8 8 4 10 8 8 8 8
Dur 440 316 443 440 443 451 442 443 437 448 438 380 385 232 447 442 441 441 192 495 470 460 465 460

Figure 7: Characteristics of Single Day Instances.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Airport M M M M M M M M M M M M M M M M M M M M M M M M
# Obs 23 23 23 32 32 32 32 27 27 27 61 61 61 61 61 61 61 15 15 15 15 15 44 44
Index 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Airport M M M M M M M M M M M N N N H H H H
# Obs 44 44 44 58 58 58 58 58 58 58 58 24 24 24 38 38 38 38

Figure 8: Characteristics of one-month span Multiple Day instances.
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Figure 10: Maximum amount of observing time scheduled
for the One Month Multiple Day Instances.

3. Examining 5 start times was sufficient to achieve good
performance.

4. When evaluating observations in the lookahead phase,
evenly weighting all 4 features of the heuristic achieved
good performance. We did not analyze uneven weighting
of the features.

5. When evaluating observations after lookahead, only Im-
portance and Efficiency contributed to the heuristic.
When weighted evenly, the algorithm achieved good per-
formance; we did not consider uneven weightings of the
features.

These settings were used in the experiments that are de-
scribed in the following sections.

Single Day Instances

After settling on the parameters of the algorithm, we ran the
flight planning algorithm with these parameter settings on
all of the Single Day Instances. The goal of this experiment
was to ensure that the parameter settings we found were not
biased by the small number of problem instances. Forward-
Planner was able to schedule all of the observations for all
but 3 of the instances; problems 31,37 and 46. When the
algorithm was not able to perform all of the observations, it
omitted only one observation.

Recall that the Single Day Instances limit the duration of
the flight to be 1.1 times as long as the archived flight plan.
We compared the flight efficiency of flights found by the
planner. Figure 6 shows differences in the flight efficiencies
of the archived plan and those found by our algorithm. In
the figure we have plotted the difference between the effi-
ciency of the archived flight and the best flight efficiency we
found, and the difference between the archived efficiency
and the average flight efficiency of those flights for which
we were able to observe all of the objects. If the difference
is positive, then the archived flight was more efficient than
the flight (or the average) found by our algorithm. We see
from the results that in most of the cases, the most efficient
flight found by our algorithm was better than the archived
flight efficiency. About half the time, the average efficiency
of the flights found by our planner is better than the archived
flight efficiency. Note that these results should be taken with
a grain of salt, because the archived flights account for re-
stricted airspace, which tends to lengthen flights, and nomi-
nal winds, which can either lengthen or shorten a flight.

The flights from the KAO contained no indication of rel-
ative object priorities, so the priorities of all observations
were equally weighted. We performed a series of 10 exper-
iments in which the priorities of the observations were ran-
domly selected from the range 1 to 10. We then performed
exactly the same experiment. In all cases, the performance
was as good or better as in the case where all observations
priorities were equally weighted.

Multiple Day Instances

We then ran the algorithm with the same parameter settings
on the Multiple Day Instances. Since no archived flight
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Figure 9: Characteristics of two-month span Multiple Day Instances.
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Figure 11: Flight Efficiencies for the One Month Multiple
Day Instances.

matches the Multiple Day Instances we have constructed, we
cannot compare the performance of the algorithm on these
instances to previously generated plans. We present both the
maximum amount of observing time scheduled as well as
the maximum flight efficiency, which is the percentage of
the flight spent performing observations. This conveys how
well the algorithm is able to pack the schedule with obser-
vations from the list of candidate objects.

Figure 10 shows the maximum observing time scheduled
for each of the one-month Multiple Day Instances. Figure 11
shows the maximum flight efficiencies of the schedules that
maximize the observing time. As we see from these figures,
the algorithm is able to schedule a considerable amount of
observing time for each problem instance, and in most cases
the flight efficiencies of these schedules is very high.

Figure 12 shows the maximum observing time scheduled
for each of the two-month Multiple Day Instances. Fig-
ure 13 shows the maximum flight efficiencies of the sched-
ules that maximize the observing time. Again, we see from
these figures, the algorithm is able to schedule a consider-
able amount of observing time for each problem instance,
and in most cases the flight efficiencies of these schedules
is very high. We conclude that the algorithm does not be-
come confounded by the presence of many extra observa-
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Figure 12: Maximum number of observations scheduled for
the Two Month Multiple Day Instances.

tions, and can effectively find good sets of observations to
schedule and choose a good ordering for them.

Tuning Algorithm Performance
In conducting our experiments on the Multiple Day In-
stances, we discovered that computation time became quite
large. The main reason for this was the dead leg search. The
maximum dead leg durationD, dead leg incrementE and
heading incrementI can all be used to limit the number of
prospective dead legs constructed. However, reducing these
prospective dead legs may come at a cost in the value of
the resulting flight plans. Reducing the maximum dead leg
duration to zero may lead to poor plans because some ob-
servations may not be possible. Similarly, reducing the dead
leg or heading granularity may lead to inefficient plans.

Figures 14 and 15 show the impact of changingD andI
on problem instance 19 from the Two Month Multiple Day
Instances in Figure 9. For each of the parameter settings
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Figure 13: Flight efficiency for the Two Month Multiple Day
Instances.
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Figure 14: Impact of Dead Leg Construction on Maximum
Observing Time Scheduled.
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Figure 15: Impact of Dead Leg Construction on Efficiency
of Flight Plans Maximizing Number of Observations Sched-
uled.

we ran 100 samples of the flight planning algorithm. The
figure shows the maximum observing time over all flight
plans generated. All other algorithm parameters were oth-
erwise the same. We see from this figure that modifying the
dead leg search algorithm has some impact on the amount of
time spent observing in the best plans found, but that the im-
pact is not very consistent across the range of dead leg con-
struction parameters. The largest difference is 20 minutes,
which among the shortest observations over all observation
requests in all of the problems. We also see that the impact
on the flight efficiency is no more than a few percent at most.
We found this to be true across the range of test cases.

We ran an experiment to see how the ForwardPlanner per-
formance scales with increasing numbers of observations.
Even though the worst case isO(KMN2), it is easy to see
that performance can vary widely. For instance, the cost of
the lookahead phase depends on how many feasible obser-
vations there are, and as flight planning progresses this can
change dramatically. We took 13 initial states from Moffett
Field during August to September of 1995 and used these
to create new initial states with between 6 and 102 observa-
tions (corresponding to the Two Month Multi-Day instances
numbered17 to 28 in Figure 9). We then ran ForwardPlan-
ner 100 times to obtain average performance data. We used
a maximum dead leg duration of 60 minutes and a dead leg
increment of 2 minutes; otherwise we used the same param-
eter settings used in the previous experiments. We plot the
results in Figure 16. We also plot the results of multiple
linear regression to fit a quadratic model of algorithm per-
formance. In this case, we know thatM remains roughly
constant asN grows. These experiments were run on a 600
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Figure 16: Performance of the algorithm using dead legs of
maximum 60 minutes with 2 minute increments.

Mhz Sun Blade with 2 Gigabytes of RAM. We have included
the linear regression model, and the models formed by us-
ing the upper and lower 95% coefficients This plot shows
that the performance of ForwardPlanner is well-modeled by
a quadratic function of the number of observations.

Conclusions and Future Work
We have described a telescope observation scheduling prob-
lem motivated by the SOFIA General Investigator program.
The problem is unique when compared to other scheduling
problems in that it involves complex, sequence-dependence
constraints governing the simultaneous apparent motion of
the objects and the observatory. These are complicated by
the requirement that the observatory return to a designated
location. We have described a forward search algorithm
and associated heuristics, and demonstrated that the result-
ing search algorithm performs well on a realistic benchmark
problem.

The problem described in this paper makes a number of
simplifying assumptions. The planner does not account for
restricted airspace, which can influence the order of the ob-
servations and the characteristics of dead legs. Aircraft mo-
tion depends on wind direction and velocity, which are not
modeled. In addition, astronomers may impose additional
requests on observations, such as a minimum observing alti-
tude, and constraints between calibration objects and actual
science objects. Finally, the flight duration approximates
the fuel consumption profile of the aircraft. Accounting for
these factors will likely require modification of the algo-
rithm described here. In addition, the algorithm described
is the first automated solution to the SFPP. There are a large

variety of algorithm modifications that are worth exploring,
such as modifying the heuristics weights on the fly during
search, modifying the lookahead scheme, and implement-
ing local search algorithms to solve this problem. These en-
hancements are being considered.
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